Kinematic markers II: Stress Nodes


Fig2Stress Node Map

There are at least 20 locations in Europe where the EMSC earthquake database is recording a spatial concentration of earthquake epicenters, like in the Vrancea Stress Node in Romania. We term these high activity seismogenic locations as ‘stress nodes’, because earthquake epicenters are sites of stress accumulation and release. High velocity bodies below a strike-slip zone are not uncommon (Hadley and Kanamori, 1977, in Kearey and Vine, 1996). Hadley has documented a high velocity body below the Transverse Ranges which was seismically active even at 100km.

A similar phenomenon happens in the Vrancea area, which serves as a meeting point for three different nanoplates, hence cross-cutting strike-slip faults. In this area, seismic gaps should be interpreted as oversteps of faults, as suggested in the case of the Calaveras fault (Reasenberg and Ellsworth, 1982). The occurrence of stress nodes in corner positions of microplates and nanoplates could be already predicted by GSST logics as well, without consulting the earthquake database, because significant structural deformation is also more likely to be present in corner locations.

Just nearby the Haute Provence Stress Node, in Southeastern France, 6 distinct deformation domains were isolated from the inversion of 89 focal mechanism (Baroux et al., 2001), which fits completely into the expected structural configuration, outlined by GSST techniques. This great variety of the recorded deformation domains is depicting the whole strike-slip stress field, including conjugate fault activity.

In the current study we have isolated the following Stress Nodes: 1) Vrancea Stress Node, Eastern Carpathians, Romania, 2) South Silesian Stress Node, Poland, 3) Lower Silesian Stress Node, Poland, 4) Po Valley Stress Node, Italy, 5) Cuneo Stress Node, Alpi-Marittime, Italy, 6) Haute Provence Stress Node, Alpes-de-Haute-Provence, France, 7) Pyrenees Stress Node, Spain, 8) Umbria Stress Node, Apennines, Italy, 9) Lipari Stress Node, Tyrrhenian Sea, Italy, 10) Monte Negro Stress Node, 11) Albanian Stress Node, 12) Gulf of Corinth Stress Node, Greece, 13) Keffalonia Stress Node, Greece, 14) Zakinthos Stress Node, Greece, 15) Crete Cluster of Stress Nodes, Greece, 16) Soma Stress Node, Turkey, 17) Şenköy Stress Node, Turkey, 18) Çameli Stress Node, Turkey, 19) Sapientza Stress Node, Greece, 20) Pamukkale Stress Node, Turkey, 21) Elazig Stress Node, Turkey, 22) Tabriz Stress Node, 23) Van Lake Stress Node, Turkey, 24) Qushm Stress Node, Iran, 25) Karakul Stress Node, Pamir Mts. China-Tajikistan, 26) Badakhshan Stress Node, Pamir Mts., Tajikistan, 27) Islamabad Stress Node, Himalaya Mts., Pakistan.

A systematic description of stress nodes listed above does not represent the objective of the present study.

Published in: Kovács, J.Sz., 2015 (in press), Elements of Global Strike-Slip Tectonics: a Quasi-Neotectonic Analysis, Journal of Global Strike-Slip Tectonics, v1., Szekler Academic Press, Sfintu Gheorghe.